CNT 4714: Enterprise Computing
Spring 2010

Introduction To GUIs and Event-Driven
Programming In Java — Part 2

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://lwww.cs.ucf.edu/courses/cnt4714/spr2010

School of Electrical Engineering and Computer Science
University of Central Florida

CNT 4714: GUIs In Java — Part 2 Page 1 © Mark Llewellyn

Using Panels as Subcontainers

Suppose that you want to place ten buttons and a text field in a frame. The
buttons are placed in a grid formation, but the text field is to be placed on a
separate row.

It would be difficult to achieve this effect by placing all of the components
into a single container. With Java GUI programming, you can divide a
window into panels.

Panels act as subcontainers to group user-interface components. We can then
add the buttons to one panel and then add the panel into the frame.

The Swing version of panel is JPanel. You can use
new JPanel () to create a panel with a default
FlowLayout manager
or —
new JPanel (LayoutManager) to create a panel with the specified
layout manager.
The following example illustrates using panels as subcontainers.

o
CNT 4714: GUIls In Java — Part 2 Page 2 © Mark Llewellyn g);

import java.awt.*;
import javax.swing.*;

Example — Using Panels

public class TestPanels extends JFrame ({
public TestPanels () {
// Create panel pl for the buttons and set GridLayout
JPanel pl = new JPanel();
pl.setlLayout (new GridLayout (4, 3, 5));

// Add buttons to the panel
for (int 1 = 1; 1 <= 9; 1++) {
pl.add (new JButton("" + 1));

pl.add (new JButton("" + 0));

JButton start = new JButton ("Start");
start.setBackground (Color.GREEN) ;
pl.add(start);

JButton stop = new JButton ("Stop"):;
stop.setBackground (Color.RED) ;

pl.add (stop);

// Create panel p2 to hold a text field and pl

JPanel p2 = new JPanel (new BorderLayout (10,10));

p2.add (new JTextField("12:00 PM"),
BorderLayout.NORTH) ;

p2.add (pl, BorderLayout.CENTER) ;

CNT 4714: GUIls In Java — Part 2 Page 3 © Mark Llewellyn

// add contents into the frame
add (p2, BorderLayout.EAST);
add (new JButton ("Food to be placed here"),
BorderLayout.CENTER) ;
}

/** Main method */

public static void main(String[] args) {
TestPanels frame = new TestPanels();
frame.setTitle ("The Front View of a Microwave Oven");
frame.setSize (400, 250);
frame.setLocationRelativeTo (null); // Center the frame
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
frame.setVisible (true) ;

The program uses panel pl1 (GridLayout manager) to group the number buttons, the
Start button, and the Stop button, and panel p2 (BorderLayout manager) to hold a
text field in the north and the panel p1 in the center. The button representing the food is
placed in the center of the frame, and p2 is placed in the east of the frame. See pages 6
and 7.

CNT 4714: GUIls In Java — Part 2 Page 4 © Mark Llewellyn

Content Panel

@ 1he Front Yiew of a Microwave Oven

12:00 Fh

Food to be placed here

Panel p1

Panel p2

CNT 4714: GUIls In Java — Part 2 Page 5 © Mark Llewellyn

The Front Yiew of a Microwave Oven

Initial frame — no components
added yet.

Showing just panel pl1

The Front View of a Microwave Oven added to the frame.

CNT 4714: GUIls In Java — Part 2 Page 6 © Mark Llewellyn

B The Front View of a Microwave Oven ShOWing panel p2 added to the frame —
panel p2 uses a BorderLayout with the
JTextField placed in the North area and
panel pl placed in the Center area. Other
areas on the BorderLayout are not used.

Showing final frame using
BorderLayout. Added a JButton
pwave Ove (“Food to be placed here”) to the
1200 FM Center area. Added panel p2 to the
East area.

Food to be placed here A textfield

A button 12
buttons

CNT 4714: GUIls In Java — Part 2 Page 7 © Mark Llewellyn

Common Features of Swing GUI Components

 We’ve already used several GUI components (e.g., JFrame,
Container, JPanel, JButton, JLabel,
JTextField) In the previous example.

« We’ll see many more GUI components as we continue on, but it
IS Important to understand the common features of Swing GUI
components.

 The Component class is the superclass for all GUI components
and containers. All Swing GUI components (except JFrame,
JApplet, and JDialog) are subclasses of JComponent (see
Part 1 pages 5 and 9).

 The next page illustrates some of the more commonly used
methods in Component, Container, and JComponent for
manipulating properties like font, color, size, tool tip text, and
border.

¢

CNT 4714: GUIs In Java — Part 2 Page 8 © Mark Llewellyn @/'

Common Features of Swing Components

java.awt.Component

-font: java.awt.Font
-background: java.awt.Color
-foreground: java.awt.Color
-preferredSize: Dimension
-visible: boolean

—

+getWidth(): int
+getHeight(): int
+getX(): int
+getY(): int

java.awt.Container

+add(comp: Component): Component
+add(comp: Component, index: int): Component
+remove(comp: Component): void
+getLayout(): LayoutManager

+setLayout(l: LayoutManager): void
+paintComponents(g: Graphics): void

javax.swing.JComponent 7

o

-toolTipText: String

-border: javax.swing.border.Border

L~

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

The font of this component.

The background color of this component.
The foreground color of this component.
The preferred size of this component.
Indicates whether this component is visible.

Returns the width of this component.
Returns the height of this component.

getX() and getY () return the coordinate of the component’s
upper-left corner within its parent component.

Adds a component to the container.

Adds a component to the container with the specified index.
Removes the component from the container.

Returns the layout manager for this container.

Sets the layout manager for this container.

Paints each of the components in this container.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

The tool tip text for this component. Tool tip text is displayed when

the mouse points on the component without clicking.
The border for this component.

CNT 4714: GUIs In Java — Part 2

Page 9 © Mark Llewellyn

r
Y

Common Features of Swing GUI Components

« A tool tip text Is text displayed on the component when you
move the mouse on the component. It is often used to describe
the function of a component.

* You can set the border on any object of the JComponent class.
Swing has several types of borders.

— For example, to create a titled border, use:
new TitledBorder (String title)
— To create a line border use:
new LineBorder (Color color, int width)

where width specifies the thickness of the line in pixels.

« The following example illustrates some of the common Swing
features.

#
CNT 4714: GUIls In Java — Part 2 Page 10 © Mark Llewellyn @j

Example — Common Swing Features

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

public class TestSwingCommonFeatures extends JFrame {
public TestSwingCommonFeatures () {
// Create a panel to group three buttons
JPanel pl = new JPanel (new FlowLayout (FlowLayout.LEFT, 2, 2));
JButton jbtLeft = new JButton("Left");
JButton jbtCenter = new JButton ("Center");
JButton JjbtRight = new JButton ("Right");
JbtLeft.setBackground (Color.WHITE) ;
JjbtCenter.setBackground (Color.GREEN) ;
JjbtCenter.setForeground (Color.BLACK) ;
JbtRight.setBackground (Color.BLUE) ;
JbtRight.setForeground (Color.WHITE) ;
JjbtLeft.setToolTipText ("This is the Left button");
.add (jbtLeft);
.add (jbtCenter) ;
.add (jbtRight) ;
.setBorder (new TitledBorder ("Three Buttons"));

// Create a font and a line border
Font largeFont = new Font ("TimesRoman", Font.BOLD, 20);
Border lineBorder = new LineBorder (Color.BLACK, 2);

CNT 4714: GUIls In Java — Part 2 Page 11 © Mark Llewellyn

// Create a panel to group two labels
JPanel p2 = new JPanel (new GridLayout (1,
JLabel jlblRed = new JLabel ("Red");
JLabel jlblOrange = new JLabel ("Orange");
J1lblRed.setForeground (Color.RED) ;
J1lblOrange.setForeground (Color. ORANGE) ;
jlblRed.setFont (largeFont) ;
jlblOrange.setFont (largeFont) ;
J1lblRed.setBorder (lineBorder) ;
jlblOrange.setBorder (lineBorder) ;

p2.add (jlblRed) ;

p2.add (jlblOrange) ;

p2.setBorder (new TitledBorder ("Two Labels"));

TestSwingCommonFeatures Z E| E'

// Add two panels to the frame Three Buttons

setLayout (new GridLayout (2, 1, 5)):

add (p2) ;

Two Labels

Red

public static void main(String[] args) {

// Create a frame and set its properties
JFrame frame = new TestSwingCommonFeatures|() ;
frame.setTitle ("TestSwingCommonFeatures") ; Insertion point for
frame.setSize (300, 150); statements shown
frame.setLocationRelativeTo (null); // Center the frame on page 16.
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
frame.setVisible (true) ;

CNT 4714: GUIls In Java — Part 2 Page 12 © Mark Llewellyn

A titled
border

TestSwingCommonkeatures : E‘ rz‘
Three Buttons

| S T

Two Labels

Red e |

CNT 4714: GUIls In Java — Part 2 Page 13 © Mark Llewellyn

Moving the mouse over the left
button causes the tool text tip to
display.

TestSwingCommonkeatures : E‘ rs__(‘

Th|5 5 the Lett hutton

Two L a

Red [l |

CNT 4714: GUIls In Java — Part 2 Page 14 © Mark Llewellyn

Change the layout manager for panel pl to a GridLayout. Notice the difference?

TestSwingCommonkFeatures : E‘ [z‘
Three Buttons

Two Labels

Red [|

CNT 4714: GUIls In Java — Part 2 Page 15 © Mark Llewellyn

NOTE

The same property may have different default values in different components.

For example, the visible property in JFrame is false by default, but it is true in every
Instance of JComponent (e.g., JButton and JLabel) by default.

To display a JFrame, you must invoke setvVisible (true) to set the visible
property true, but you don’t need to set this property for a JButton or a JLabel
because it is already true.

To make a JButton or a JLabel invisible, you need to invoke
setVisible (false) on the button or label.

Rerun the TestSwingCommonFeatures program again after inserting the two
lines, shown below, immediately prior to adding the panels to the frame (see page 12).

JbtLeft.setVisible (false);
JlblRed.setVisible (false) ;

The effect of adding these two lines is shown on the next page.

#
CNT 4714: GUIls In Java — Part 2 Page 16 © Mark Llewellyn égﬁj

Making button and label invisible

TestSwingCommonkeatures : E‘ r>__(‘
Three Buttons

Two Labels

Orange |

CNT 4714: GUIls In Java — Part 2 Page 17 © Mark Llewellyn

Image Icons

« An icon Is a fixed-size picture; typically it is small and used to
decorate components.

« Images are stored in image files. Java currently supports three
Image formats: GIF (Graphics Interchange Format), JPEG (Joint
Photographic Experts Group), and PNG (Portable Network
Graphics). The image file names for these types end with . gif,
.Jpg, and .png respectively. If you have a bitmap file or
Image files in other formats, you can use image-processing
utilities to convert them into GIF, JPEG, or PNG formats for use
In Java.

« To display an image icon, first create an ImageIcon object
using new javax.swing.ImagelIcon (filename). For
example, the following statement creates an icon from an image
file us.gif In the image directory under the current class
path: ImagelIcon icon = new ImagelIcon (“image/us.gif”);

’

CNT 4714: GUIs In Java — Part 2 Page 18 © Mark Llewellyn @l'

Image Icons

The back slash (\) is the Windows file path notation. In Unix, the
forward slash (/) should be used.

In Java, the forward slash (/) is used to denote a relative file path
under the Java classpath (e.g., image/us.gif, as In this

example).

File names are not case sensitive in Windows but are case
sensitive in Unix. To enable your programs to run on all
platforms, name all image files consistently using only lowercase
letters.

The following example illustrates image icons. This example
uses an absolute path name to the image files.

’

CNT 4714: GUIs In Java — Part 2 Page 19 © Mark Llewellyn @l'

import javax.swing.*; _
import java.awt.*; Example — Using Image Icons

public class TestImagelcon extends JFrame ({
private ImageIcon uslIcon = new Imagelcon("E:/image/us.gif");
private Imagelcon mylIcon = new Imagelcon ("E:/image/sw-t.jpg");
private ImagelIcon frIcon new ImagelIcon ("E:/image/fr.gif");
private ImagelIcon ukIcon = new ImagelIcon ("E:/image/uk.gif");

public TestImagelcon () {
setLayout (new GridLayout (1,
add (new JLabel (usIcon)) ;
add (new JLabel (myIcon)) ;
add (new JButton (frIcon)):;
add (new JButton (ukIcon))

’

/** Main method */

public static void main(String[] args) {
TestImagelIcon frame = new TestImagelcon();
frame.setTitle ("TestImagelIcon");
frame.setSize (500, 125);
frame.setLocationRelativeTo (null); // Center the frame
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
frame.setVisible (true);

CNT 4714: GUIls In Java — Part 2 Page 20 © Mark Llewellyn

Commonly Used GUI Components

« A graphical user interface (GUI) makes a system user-friendly
and easy to use. Creating a GUI requires creativity and
knowledge of how GUI components work. Since the GUI
components in Java are very flexible and versatile, you can create
a wide assortment of useful user interfaces.

« Many Java IDEs provide tools for visually designing and
developing GUIs that enable you to rapidly assemble the
elements of a user interface for a Java application with minimal
coding. However, such tools cannot do everything that you
would like and you need to modify the programs that they
produce, so you need to be familiar with the basic concepts of
Java GUI programming.

« To this end, we’ll examine many of the more commonly used
GUI components in Java.

’

CNT 4714: GUIs In Java — Part 2 Page 21 © Mark Llewellyn @l'

Commonly Used GUI Components

Componentq— Container <]—JComponent

— JLabel

AbstractButton q— — JCheckBox
JToggleButton { H

JTextComponent

— JComboBox

— JList

L JScrollBar

— JSlider

JButton

JRadioButton
JTextArea

JTextField Q— JPasswordField

CNT 4714: GUIs In Java — Part 2

Page 22

© Mark Llewellyn

Buttons

A button Is a component that triggers an action event when
clicked.

Swing provides regular buttons, toggle buttons, check box
buttons, and radio buttons.

The common features of these buttons are generalized In
Jjavax.swing.AbstractButton.

The UML for this class is shown on page 24.

Many common buttons are defined in the JButton class.
The JButton class extends AbstractButton and Its
UML is shown on page 25.

#
CNT 4714: GUIls In Java — Part 2 Page 23 © Mark Llewellyn @j

Jjavax.swing.AbstractButton

javax.swing.JComponent

Z

javax.swing.AbstractButton

-actionCommand: String
-text: String
-icon: javax.swing.lcon

-pressedlcon: javax.swing.lcon
-rolloverlcon: javax.swing.lcon
-mnemonic: int

-horizontal Alignment: int
-horizontal TextPosition: int
-verticalAlignment: int
-vertical TextPosition: int
-borderPainted: boolean

-iconTextGap: int
-selected(): boolean

— |

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

The action command of this button.
The button’s text (i.e., the text label on the button).

The button’s default icon. This icon is also used as the "pressed" and
"disabled" icon if there is no explicitly set pressed icon.

The pressed icon (displayed when the button is pressed).
The rollover icon (displayed when the mouse is over the button).

The mnemonic key value of this button. You can select the button by
pressing the ALT key and the mnemonic key at the same time.

The horizontal alignment of the icon and text (default: CENTER).
The horizontal text position relative to the icon (default: RIGHT).
The vertical alignment of the icon and text (default: CENTER).
The vertical text position relative to the icon (default: CENTER).

Indicates whether the border of the button is painted. By default, a regular
button’s border is painted, but the borders for a check box and a radio

button is not painted.
The gap between the text and the icon on the button (JDK 1.4).

The state of the button. True if the check box or radio button is selected,

false if it's not.

CNT 4714: GUIs In Java — Part 2

Page 24 © Mark Llewellyn

7
()
S,

jJjavax.swing.JButton

javax.swing.AbstractButton

PZa

javax.swing.JButton

+JButton()

+JButton(icon: javax.swing.lcon)
+JButton(text: String)
+JButton(text: String, icon: Icon)

Creates a default button with no text and icon.
Creates a button with an icon.

Creates a button with text.

Creates a button with text and an icon.

CNT 4714: GUIs In Java — Part 2

© Mark Llewellyn

lcons, Pressed Icons, and Rollover Icons

A regular button has a default icon, a pressed icon,
and a rollover icon.

« Normally, you use the default icon. The other icons
are for special effects. A pressed icon is displayed
when a button Is pressed, and a rollover icon Is
displayed when the mouse Is positioned over the
button but not pressed.

 The example on the next page, displays the
American flag as a regular icon, the Canadian flag
as a pressed icon and the British flag as a rollover
icon.

’

CNT 4714: GUIs In Java — Part 2 Page 26 © Mark Llewellyn @l'

lcons, Pressed Icons, and Rollover Icons

import javax.swing.*;
public class TestButtonIcons extends JFrame {
public static void main (String[] args) { B Buttonlcons Q@@

// Create a frame and set its properties
JFrame frame = new TestButtonIcons();
frame.setTitle ("ButtonIcons");
frame.setSize (200, 100); default icon
frame.setLocationRelativeTo (null); // Center the frame
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

frame.setVisible (true) ;
B Buttonicons Q@@

public TestButtonIcons () {
Imagelcon usIcon = new ImagelIcon ("E:/image/usIcon.gif");
ImageIcon calcon = new Imagelcon ("E:/image/calcon.gif"); rollover icon
ImagelIcon ukIcon = new ImagelIcon ("E:/image/ukIcon.gif");

JButton jbt = new JButton ("Click 1it", usIcon); B Buttonlcons = |[B|[X]

Jbt.setPressedIcon (calcon);
Jjbt.setRolloverIcon (ukIcon) ; & Click it

add (jbt) ; pressed icon

CNT 4714: GUIls In Java — Part 2 Page 27 © Mark Llewellyn

Alignments

« Horizontal alignment specifies how the icon and text are
placed horizontally on a button.

 You can set the horizontal alignment using one of the five
constants: LEADING, LEFT, CENTER, RIGHT,

TRAILING.

— At present, LEADING and LEFT are the same and TRAILING and
RIGHT are the same. Future implementation may distinguish them.

 The default horizontal alignment IS
SwingConstants.TRAILING.

ol CESE o _Iojx

p Grapes p Grapes p Grapes

CNT 4714: GUIls In Java — Part 2 Page 28 © Mark Llewellyn

Alignments

 Vertical alignment specifies how the icon and text
are placed vertically on a button.

* You can set the vertical alignment using one of
the three constants: TOP, CENTER,
BOTTOM.

* The default vertical alignment IS
SwingConstants.CENTER.

EXT - (x| EXEE o)

Soorrom =Y

(.
CNT 4714: GUIls In Java — Part 2 Page 29 © Mark Llewellyn gjj

Text Positions

» Horizontal text position specifies the horizontal
position of the text relative to the icon.

* You can set the horizontal text position using
one of the five constants: LEADING, LEFT,

CENTER, RIGHT, TRAILING.

« The default horizontal text position IS
SwingConstants.RIGHT.

=0x| FEEE -o/x|| EYUEIE - (0|

Grapes p p p Grapes

CNT 4714: GUIls In Java — Part 2 Page 30 © Mark Llewellyn

Text Positions

 Vertical text position specifies the vertical position
of the text relative to the icon.

» You can set the vertical text position using one
of the three constants: TOP, CENTER.

« The default wvertical text position IS

SwingConstants.CENTER.

; ~ Grapes
Grapes
Grapes

CNT 4714: GUIls In Java — Part 2 Page 31 © Mark Llewellyn

NOTE

The constants LEFT, CENTER, RIGHT, LEADING,
TRAILING, TOP, and BOTTOM used In AbstractButton
are also used in many other Swing components. These constants

are centrally defined In the
javax.swing.SwingConstants Interface.

Since all Swing GUI components Implement
SwingConstants, you can reference the constants through
SwingConstants (class reference) or a GUI component
(instance reference). For example,
SwingConstants.CENTER IS the same as
JButton.CENTER.

JButton can generate many types of events (as we’ll see later),
but often you need to respond to an ActionEvent. When a
button is pressed, it generates an ActionEvent.

o
CNT 4714: GUIls In Java — Part 2 Page 32 © Mark Llewellyn g);

Using Buttons

As a brief introduction to event-driven programming, the next
example, creates a message panel that displays a message and then
allows the user, through the use of buttons, to move the message
either left or right in the panel.

The major steps in the program are:
Create the user interface.

Create a MessagePanel object to display the message. (The
MessagePanel class is separate from this program and we’ll use it again
later. In this case the messagePanel object is deliberately declared
protected S0 that it can be referenced by a subclass in future examples.)
Place it in the center of the frame, and create two buttons on a panel and
place the panel in the south area of the frame.

Process the event. Create and register listeners for processing the action
event to move the message left or right depending on which button was
clicked (pressed).

”
CNT 4714: GUIls In Java — Part 2 Page 33 © Mark Llewellyn g);

Using Buttons

ButtonDemo E@

Wieloame to Java

<= ==

Initial frame

ButtonDemo ButtonDemo |:| |E| [Z|

Welcome to Java
Welcome to Java

<= ==
== ==

F-rame after user has Frame after user has
clicked ‘the left button clicked the right button
a few times a few times

CNT 4714: GUIls In Java — Part 2 Page 34 © Mark Llewellyn

Example — Using Buttons

import java.awt.*;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.*;

public class ButtonDemo extends JFrame {
// Create a panel for displaying message
protected MessagePanel messagePanel
= new MessagePanel ("Welcome to Java");

// Declare two buttons to move the message left and right
private JButton jbtLeft = new JButton ("<=");
private JButton jbtRight = new JButton ("=>");

public static void main(String[] args) {
ButtonDemo frame = new ButtonDemo () ;
frame.setTitle ("ButtonDemo") ;
frame.setLocationRelativeTo (null); // Center the frame
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
frame.setSize (250, 100);
frame.setVisible (true) ;

CNT 4714: GUIls In Java — Part 2 Page 35 © Mark Llewellyn

public ButtonDemo () {

// Set the background color of messagePanel
messagePanel .setBackground (Color.white) ;

// Create Panel JjpButtons to hold two Buttons "<=" and "right =>"
JPanel jpButtons = new JPanel ();

JpButtons.setLayout (new FlowLayout());

JpButtons.add (jbtLeft);

JpButtons.add (jbtRight) ;

Uncomment
// Set keyboard mnemonics these lines to set
jbtLeft.setMnemonic ('L") ; an icon image on
JbtRight.setMnemonic ('R"); the button.
// Set icons and remove text l
// jbtLeft.setIcon(new Imagelcon ("image/left.gif"));
// jbtRight.setIcon (new Imagelcon ("image/right.gif")); B ButtonDema =
// qthgft.setText(null); Welcame to Java
// jbtRight.setText (null) ;

- >

// Set tool tip text on the buttons
JbtLeft.setToolTipText ("Move message to left");
JbtRight.setToolTipText ("Move message to right");

CNT 4714: GUIls In Java — Part 2 Page 36 © Mark Llewellyn

// Place panels in the frame
setLayout (new BorderLayout())
add (messagePanel, BorderLayout.CENTER) ;
add (jpButtons, BorderLayout.SOUTH) ; Register listener for left

button and set
// Register listeners with the buttons actionPerformed ()

JbtLeft.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
messagePanel . .movelLeft () ;
/ Reqgister listener for right
> bi , , , , // button and set
JbtRight.addActionlListener (new ActionlListener () | actionPerformed ()
public void actionPerformed (ActionEvent e) {
messagePanel .moveRight () ;

CNT 4714: GUIls In Java — Part 2 Page 37 © Mark Llewellyn

